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A measure is defined for how nonclassical a quantum state is, with values ranging
from O to 1. When it is applied to the photon-number states, the calculated value
is 1, the maximum possible. For squeezed states, it is a monotonically increasing
function of the squeeze parameter with values varying from 0 to 1/2. The physical
meaning of the nonclassical depth is found to be just the number of thermal photons
necessary to ruin the nonclassical nature of the quantum state.

In the coherent-state description of radiation fields, initiated by Glauber (Ref. 1) and
Sudarshan (Ref. 2) in 1963, there are P and Q representations corresponding to the normal and
antinormal ordering, respectively, of the creation and annihilation operators. Their distribution, or
quasi-distribution, functions in the complex plane are related to each other through the following
convolution transform (Ref. 3):

0(z) = [ L et p(u), M

T

where z and w are complex variables. We can introduce a continuous parameter 7 and define
a general distribution function as

1 [ d? 1 2
R(z,7) = - —Wyiexp (—;{z — w| )P(w). (2)

We shall call R(z,7) the R function from now on. The original P and Q functions are two
limiting cases of the R function with 7 = 0 and 1, respectively.

Our motivation for introducing the 7 parameter is to define a measure of how nonclassical
quantum states are. It is well known that the origin of the nonclassical effects is that the P
functions of all pure quantum states are singular and not positive definite, as shown by Hillery
(Ref. 4); hence it is called quasi-distribution function. On the other hand, the Q function is
always a positive definite regular function. The smoothing effect of the convolution transform
of Eq. (2) is enhanced as 7 increases. If r is large enough so that the R function becomes
acceptable as a classical distribution function, i.e., it is a positive definite regular function, then
we say that the smoothing operation is complete. Let C denote the set of all the 7 that will
complete the smoothing of the P function of a quantum state and let the greatest lower bound,
or infimum, of all the 7 in C' be denoted by

T = :22(7’) (3)
We propose to adopt 7, as the nonclassical depth of the quantum state.

According to this definition, we have 7,, = 0 for an arbitrary coherent state |«) since its P
function is of the form of a delta function, 76%(z — «). On the other hand, for 7 = 1 we have
R(z,1) = Q(z), which is always acceptable as a classical distribution function for any quantum
state; hence, 1 is an upper bound for ,,. Therefore, we can specify the range of 7,, to be

0<m <L )
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We shall try this definition on two of the most familiar types of nonclassical radiation states:
the photon-number (Fock) states and the squeezed states.

For a photon-number state |n), we obtain

Ru(z,7) = }(—1 - T)nexp (—@) L, <T(1|—Z|-F)> )

where L, is the Laguerre polynomial. From Eq. (5), we see that, for 0 < r < 1, R, (z,7) is not
positive definite since the Laguerre polynomial has n real positive roots. However, for 7 > 1,
the argument of the Laguerre polynomial is negative and R,.(z,7) becomes positive definite.
So we have 7,, = 1, which reconfirms our belief that the photon-number states are the most
nonclassical quantum states.

For the squeezed state generated from the vacuum state by the well-known squeeze operator
S(¢) with the complex parameter ( = re', we obtain the Gaussian function

(sechr) { 1, 2}
R(z,7)= exp < ——laz® + 2bxy + bz (6)
with
a=71+(1~-7)tanh’r — cos@tanhr, b =sinf tanhr,
¢=71+ (1 —7)tanh’r 4 cosftanhr, D =7 —(1—-7)"tanh’r. (7

For R (z,7) to be normalizable we must have

—b¥>0 and D >0.
ac (8)

Both conditions lead to the same conclusion that
T = tanhr/(1 + tanhr). )

This nonclassical depth can be expressed as a function of the squeeze parameter, s = ¢’, as
follows:
Tm(s) = (s* — 1)/2s% (10)

From Eq. (10) we see that 7,,, is a monotonically increasing function of s; it varies from 0 to 1 /2
as s varies from [ to oo.

In the first example, 7,, is determined by the requirement that R, (z,7) be positive definite;
while in the second example, it is determined by the condition that R.(z,7) be normalizable.
Is there a more systematic way to determine 7,,? To answer this question, we need to study
more examples.

As a by-product of such calculations, we will also obtain new expressions for the P functions
as follows:

P(z) =lim R(z, 7). (11)

7—0

Since the P function of a quantum state is typically highly singular, it is usually very difficulty
to visualize in its original form. Now we can visualize it as the limit of the regular R function
as 7 — 0.
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On the other hand, we consider the superposition of two quantum states with P,(z) and P(2)
as their P functions. According to Glauber (Ref. 5) the P function for the superposed state is
the convolution product of P,(z) and P,(z); namely,

d*z
P.(z)= TPI(Z — w)Pp(w) (12)
It is well known that the P function for a single-mode thermal radiation is (Ref. 5)
1 2
Pa(2) = gy o0 (1el'/ (), (13

where (n,,) = (e™/*T — 1)”" is the average photon number in the thermal radiation.

We now consider the superposition of the thermal radiation with an arbitrary state of single-
mode radiation with P(z) as its P function. Then the P function of this quantum state with
thermal noise can be expressed as

P, (z) = (nlm) /ij—:ﬁexp (—lz — wiz/(nth))P(w) (14)

Comparing Egs. (1) and (14) we see that the superposed function, P,,(z), is identical to
the Q function when (n,,) = 1.The implication of this coincidence can be stated as follows:
One thermal photon is always sufficient to destroy whatever nonclassical effects any single-mode
radiation might have.

The R function for the superposed state of Eq. (14) can be obtained as

T+1(nth) /djrw eXP [—|z—-w|2/(7-+ (nen))| P(w). (15)

R,.(z,7) =

Therefore, we have
th

T = T — (n); (16)

m
which means that the reduction in the nonclassical depth of a quantum state in the presence
of thermal noise is exactly equal to the average number of thermal photons present. This also
gives the following physical meaning to the nonclassical depth we have defined previously: The
nonclassical depth of a quantum state is the minimum number of thermal photons necessary 10
destroy any of its nonclassical characteristics.

We have previously calculated the nonclassical depth of a Fock state to be exactly 1, so it
takes one thermal photon to ruin the nonclassical nature of a Fock state. We have also calculated
the nonclassical depth of a squeezed state to varies from 0 to 1 /2 as s varies from 1 to oo; so it
never takes more than 1/2 of a thermal photon to ruin a squeezed state.

*This work was supported by the U.S. Navy, Office of Naval Research, under Grant #N00014-
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